NASA Contractor Report 166070

FAULT-TOLERANT SOFTWARE
FOR THE FTMP

Herbert Hecht and Myron Hecht

Prepared for

THE CHARLES STARK DRAPER LABORATORY, INC.
Cambridge, Massachusetts

By

SoHar Incorporated
Los Angeles, California

Final Engineering Report
Subcontract 564
Prime Contract NAS1-15336

March 1984 =

D
§ Ty
H“Wﬂlyﬁéggﬁ?

{NASA-CR-166070) FAULI-TCLEEANT SOFTWARE
" FOR THE FIMP Final Report {ScHaR, Inc.)
82 p HC AOS/MF A01 CSCL 09B

G3/62

NB6-24276

Unclas
06031

Review for general release March, 1986

g

COPY CONTROL NO.

NNASN

\ - National Aeronauticsand ~ ——— & : T L e

Space Administration

\ Langley Research Center
B Hampton. Virginia 23665

TABLE OF CONTENTS

1. ln*roduc*lon....l.‘l..llll..l'.l'.l....l..I.l..'....'l.‘.....“

1.1,
1.2.
1.3,
1.4,

Recovery BIOCks.Q.'Ill.l..ll......ll.l..llll‘.l...llB
Functlional Description of the Dispatcher..ceseeessseeb
Coverage of the Primary Routine FallureS...eeeevss.17

Software Errors Not Covered By DlIspatcher
Accepfance Tesf5¢coo|o¢lo¢00l-ccccoc-.n.ouoocuocoo-24

2, Functlonal Acceptance TeSTS.uaeeasnacesessacsssscsocacsnonseeld

2.1,
2.2.
2.3,

2.4.

Dispatcher Acceptance TestS.ieeeeesececsscocessesss?]
Interval Timer AcCeptance ToSt..esesescesscocoseessd?
Input/Output Acceptance TesStSeesesnnsosocsensansasadl

Appllications T - .

3. S+ruc+urai ACCOPTaNCe TeStSesesreearrecteocossennscenssnsesssdd

3.1.
3.2.
3.3.

3.4.
3.5,
3.6.

Errors ln SL'P and R.DONEII.C.....'.....l..l.l‘.l..45

STUG('N R4 ACCprance Tesf.-000000000000000000000148

KI1CK Accepfance Test and Modlfications to KICK
Procedures.....l..l..ll..lll.llll..l.i!‘l.00....0..51

R4 Responsible Acceptance TeSt...eeeseessceccscesss53
Uninterruptible Code Acceptance TesSt.eeeessseceesss56

Retirement Acceptance Test..eeeeceessssessscccncsssb2

4. A'*erna*e D,spa*cherOOQC.lCCCC............I........l.‘......‘ss

4.1.
4.2.

Alternate DIspatcher RequIrements....esececcssscsssbs

Description of the Alternate Dispatchercessesscesss68

References‘ICOCC..Ill..Cll..l........0..“.........lll.......ll..?o

Appendix A:
Appendix B:

New Varlables Requlred....................-.'.-......71

Uninterruptible ASM routinesS...eseeeccccecocssessessdd

List of Flgures

Elgure Iitle Eage
1.1 Implementation of the Recovery Block for the FTMP 4
1.2, R4 Frame Initiation =~ Interrupting R3 and R1 8
1.3. R4 Frame Termination -- Resume R3 10
1.4. R4 Task Invocation Procedure Control Flow 12
1.5. R3 and R1 Task Invocatlion Procedure Control Flow 13
1.6. Pend and Activate Handllng 15
1.7. Interrupt HandlIng 16
1.8. Top Level Fault Tree for the FTMP DIspatcher 18
1.9. Initlalization Faults 20
1.10. Execution Order Fallures 21
1.11. TIming Fallures 22
1.12. Recovery Block Faults 23

2.,1. Sequence of Tlmer Interrupts and DIspatcher Acceptance Tests 26

2,2. Fault Tolerant Provisions for the FTMP Dispatcher 30
2.3, Dispatcher Critical Word Acceptance Test Module 3
2.4, Frame Count Acceptance Test Module 33
2.5. Frame Counters Y 35
2.6. Crltical Word Reset Acceptance Test Module 36
2.7. Interval Timer Acceptance Test 39

PRECEDING PAGE BLANK NOT FILMED

iii

1 ENTIONALLY. BLANS,
pAGL :SS/ L

3.1,
3.2,
3.3,
3.4,
3.5.
3.6.
3.7.
3.8.

4.1,

LIst of Flgures (continued)

Iitle

SLIP Acceptance Test

R.DONE Acceptance Test

STUCK. IN.R4 Acceptance Test

KICK Acceptance Test

R4 .RESPONS IBLE Acceptance Test
Uninterruptiblie Code Acceptance Test:
Uninterruptible Code Acceptance Test:
Retirement Acceptance Test

Al ternate Dispatcher

iv

Trlad Working
Triad Idling

47
47
50
50
55
59
61
64
69

4

SECTION 1 = JNTRODUCTION

This Is the Final Englneering Report prepared for The Charles Stark Draper
Laboratory, Inc. under Subcontract 564 (Prime Contract NAS1-15336), coverlng
technical assistance In fault tolerant software development for the Fault
Tolerant Multliprocessor (FTMP). Thls report satisfles Item 4,5 of the
subcontract.)

The FTMP Is a highly rellable computer Intended to servlce rellablllty-critical
applications In scheduled alrcraft service. Work on the archltecture to provide
the required hardware fault-tolerance has been In progress slince the
mid-sixties, and has evolved Into a well-understood highly redundant system
described In ref. 1. Although this deslgn effectlvely addresses the detectlion,
maskIng, and ellImination of hardware faults, It can not circumvent fallures due
to software faults.

The work reported on here provides protection agalnst software fallures In the
dispatcher of the FTMP, a particularly critical portion of the system software.
Faults In other system modules and In application programs can be handled by
simllar techniques but coverage for these was not provided In this effort,
Goals of the work reported on here are (1) to develop provisions In the software
deslgn that will detect and mlitigate software fallures In the dispatcher portlion
of the system executive and (2) to propose the Implementation of speciflc
software rellabll Ity measures In other parts of the system. In proceeding
toward these goals, the following constralnts were observed:

the coverage of the dispatcher was to be complete; no potentlal fallure
modes were to be overlooked due to difflculty of Implementation, and

the addltional software required for Implentation of fault tolerance was to
be simple, to minimally affect the design and the operation of the current
system, and to minimize the Introduction of new variables.

All of these requirements have been met by the design described in later
sectlons of this report, and a basls has therefore been provided for augmenting
the hardware fault tolerance provisions of the FTMP wl+h equally effectlive
measures for software fault tolerance.

Beyond the speciflic support to the FTMP project, the work reported on here
represents a considerable advance in the practical application of the recovery
block methodology for fault tolerant software design. The operations carrled
out by the dispatcher are primarily In the area of loglc and sequencing, and
error detection technlques for such operations are more difflicult than for
programs dealing with flight data for which reasonableness tests based of
physical constralnts can be devised. The acceptance tests for dispatcher
functions had to be based on loglc that was Independent of the logic used In the
primary program.

In pursulng the goal of Independent acceptance tests, It was found convenient to
divide these Into two classes: functlional acceptance tests which determine
compilance with program requlirements, and structural acceptance tests which

J.ii 1l i ki

determine adherence to a predefined logic flow. These tests, as devised for the
FTMP, are described In Sectlons 2 and 3, respectively, and they represent an
implementation for a particularly challenging environment. When these tests are
not satisfled, the program elther retrles or Invokes an alternate dispatcher
directly. The design for the latter, descrlbed In Section 4, Is entirely
Independent of that of the primary dispatcher. Both the hardware and software
structure Is less flexible (and therefore less efflclent) but correspondingly
more rugged. Because most software fallures are not permanent, the alternate
dispatcher wll| attempt reversion to the primary one at discrete intervals
during routine operation. In this way, the reduced efficency of the alternate
will In most cases have very llttle effect on the operation of the flight

programs.,

Before leaving this part of the Introduction, the authors wish to express thelr
thanks for the cooperatlion recelved In this effort from personnel of The Charles
Stark Draper Laboratory and of the NASA Langley Research Center. Dr. Albert L.
Hopkins gave whole-hearted support to this work and made many heipful
sudgestions. Drs. Bas!l T. Smith and Jay Lala faclllitated the design of the
fault tolerant software by making the design and data for the primary dispatcher
avallable and patlentiy explaining detalls when this was required. To Mr, Bllly
L. Dove and Mr. Nicholas D. Murray our thanks for the support of this work and
for permitting us to particlpate In an Important area of fault tolerant
computing.

1.1. RECOVERY BLOCKS

The Inability to perform concluslve relfability evaluations on software
motivates the development of fault-tolerance techniques. Two techniques for
achleving fault-tolerance have been dlscussed In the recent |lterature: the
recovery block and N-version programming. N-version programming Involves a
number (at |east two) of Independently coded programs for a glven function that
are run simultaneously (or nearly so) on loosely coupled computers, The results
are compared, and In case of a disagreement, a preferred result Is Identifled by
a majority vote (for three or more versions) or a predetermlined strategy.

The second technique, and the one used In the FTMP, Is the recovery block (refs.
2 and 3). The simplest structure for the recovery block Is

Ensure T

By P

Else by Q
Else Error

where T Is an acceptance test condition, l.e. a conditlon which is expected to
be met by successful execution of a primary routine, P, or the alternate routine
Q. The Internal control structure of the recovery block will transfer to Q when
the test conditions are not met by executing P. '

~ Implementation of recovery blocks for the FTMP Is shown In fig. 1. The primary
routine Is executed, and If the acceptance test conditlions are not met, the
alternate routine Is Invoked. The number of passes through the alternate
routine Is counted, and after a predetermined |Imit (dependent on the
capablilities of the primary and aiternate programs, execution time, and other
factors), a transition Is made back to the primary routine.

The key element of the recovery block approach Is the acceptance test. There are
two levels on which acceptance tests can be performed. The flrst Is the
functional level, l.e. that which tests that the outputs of the program are
consistent with the functlional requirements. The second 1s the structural
level, which tests sections of code to ensure that key varlables and functlions
have been properly executed. Functlional level tests are appropriate for software
that has been In use a long time because they are simpler and It avolds
unnecessary transfers. However, for programs under development, the additlon of
structural tests provide the following benefits:

1. Unexpected behavior of the primary systems will be noted even In
cases where only a mild degradation Is encountered. Thls alds
In program evaluation,

ORIGINAL PAGE 19
OF POOR QUALITY

EXECUTE PRIMARY PROCRAM

TS ACCEPTANCF TFST 0K?
YE NO

COUNT NUMBER OF PRIMARY FAILURES

‘ SET REPETTTION LIMIT

EXECUTE ALTERNATE PROGRAM
NIL

IS ACCEPTANCE TEST (FOR ALT.)
0K?

YES NO

COUNT NUMBER OF EXECUTIONS OF
ALTERNATE

ARORT

DO UNTIL HNUMBER OF ALTERNATE
EXECUTIONS REACHFS REPFTITTIOM LIMIT

"NOCOFOREVE I

FIGURE 1.1 Implementation of the Recovery Block for the FTMP

Switching to the alternate program Is exerclsed more often under
realistlc (unplanned) conditions. Provliding reallistic testing of the
fault tolerance mechanism Is a difficult undertaking.

As a program matures, It Is usually easler to relax acceptance
condltions than to make them more restrictive.

™

1.2. FUNCTIONAL DESCRIPTION OF THE DISPATCHER

The FTMP task dispatching function selects an appllcations routine for an
avallable processor, rellnquishes control of the processor for a set period to
enable task executlon, and then returns to select the next task or pass control
to a lower priorlty executive process. By virture of Its multiprocessor
arrangement, the execution order of tasks Is not fixed, and thus, the dispatcher
must perform the following functions: (1) determine how frequentiy a task should
be run, (2) determine whether data and predecessor tasks have been completed,
(3) Invoke the task and enable Interrupts for higher priority Items or overtime,
and (4) malntaln records of functlons which have been executed along with other
housekeeping tasks. The centrallty of this function to the FTMP operation made
It a prime candidate for the Implementation of software fault-tolerance
measures.

Because the scope of the Implementation of fault-tolerance was Iimited to the
dispatcher and assoclated routines, the design of acceptance tests and of the
alternate dlspatcher was based on a portion of the entire system executive.
This section presents the functlional specifications of relevant portions of the
FTMP operating system upon which thls report rests.

The dispatcher Is dlvided Into two major routlines: the R4 rate group
dispatcher, designeted as R4.DISPATCHER, and the R3 and R! rate groups
dispatcher, designated as R3.R1.DISPATCHER. The R4 dispatcher performs flve
major functions:

1. Initialization during system start up

2. R4 frame Initliation

3. Reading error latches and performing 1/0 to the 1553 bus
4, Task selectlon and execution

5. Retlirement

The R3.R1.DISPATCHER relles on the R4 dispatcher for the above functlons, and
thus, It only performs task selection and execution for the approprliate rate
groups. Sectlon 1.2.1 contains a more detalled description of the means by
which the dispatcher routine performs these functions.

A cruclal requirement of the dispatcher Is that it perform Its functlons within
strict timing |Imits. Thus, a number of routines external to the dispatcher are

necessary to maintaln the proper time references and to perform Interruptions at
appropriate Intervals. These routines are dlscussed in sectlon 1.2.2.

1.2.1. Dlspatcher functions

Initiallzation

Inttlallzation consists of restoring portions of the system memory to default
values and zerolng out other portions. Inltiallzation Is entered upon a restart
flag belng set to TRUE, and results In the following:

The triad to start Initlallization becomes R4 .RESPONSIBLE

The system timer Is I[nitlalized

Trlad busy states are set to free

Trlad status words are set to enable executlon of all rate groups
Reconfiguration commands and states are set to 0

The configuration controller Is Initiallzed

Unlock and IPC Interrupt commands are set to 0

Error latches are cleared

The rate group control blocks for all dispatchers are Inltallzed
Lower rate groups are set to be executed In later frames

R4 frame Initlation

A new R4 frame is started every 40 msec. At the start of a new frame, the R4
dispatcher takes the following actions:

lower rate groups are Interrupted and thelr timers are stopped

the triad states are updated

task polnters are set to begin at the top of the R4 |Ist

lower rate groups are pended for execution at the approprlated frames
I1/0 for the appropriate rate groups ls performed

error latches are read and cleared

reconflguration occurs If any commands are pending

The start of a new R4 frame takes precedence over all other actlions. FTMP
senses the start of a new time frame when a trlad responsible for the frame
restart, deslignated as R4.RESPONSIBLE, responds to a timer Interrupt. Figure
1.2, adopted from a CSDL briefing chart, shows the sequence of events after the
R4 Interrupt. The R4 responsible triad, shown In the center, Is the only one
whose timer Is set with the new frame time. After It performs the
Initlalization, It sends an Interprocessor (IPC) Interrupt to a second triad,
which Is shown as belng In the Idle mode. Thls second trlad then starts up the
R4 dlispatcher for Itself, and sends an |PC Interrupt to the third triad shown
executing the R1 rate group. The third triad will Interrupt execution of the
current process, freeze the timers and other relevant control varlables, and
restart the R4 dispatcher,

Jask selection and executlon

After completion of the R4 frame Inlitiallzation tasks, the R4 dispatcher enters
a task selection loop using an Internal procedure SELECT.TASK. All tasks to be
executed In the R4 rate group are contalned In a |lst. Elements of thils |Ist,
denoted as task control blocks (TCBs), contaln Information on preceeding and
succeeding tasks, tIme |Imit, and most recent execution., Additlonal polnter
varlables lead to data buffers for |/0 for each appllications task and to

1y pue ¢y m::qz.r_ct_ -—

UOI4BI41u) eweay py

271 N9t 4
[
ASey suofed
~11dde vy pajyy peyieys
3107 PuR sey suo|ied||dde
Td 14 30 uoyyndexe peddoys
1°1 ¢ ddr TR .mauo_w; Aq pesdnaseyu;
By > 7 [od1] X§ 7 ddr noJ4b e4ea |y Bujuuny
o (% ¢4 ddr. 2d1 i 7 OVTeT
M AUn BU|4N0J suo|4ed)|dde py pug
o o
-4 o .
L
z 3
3o
m & , (P44 3781 SNOJSIY" v)
a1di *ewesy Meu
] $O 4Jeys o) Jsw|y |RAJB4U|
L >m eujinoJ suojfjes| jdde ¢y
€y ufuund 8| jys pejdnuadeyu]
x*¢ ¢ dde TOvTar
valr1l |
‘ 1'% g dde RI1l *
PUI4nOJ suotiep) 1dde by 4s 1d0¥ WINIL IVABIINI
@101 vy 4404504 04 | QyINL
- ~ woJj | AQ pajdnaieyu]
¥ dnolb eies ¢y Bujuunl
Ly .
. v 541 %°{ ¢ dde X[7 ade 0 avTar
-+ ¢ ddr . 0d1

eu|4noJ suo|4ed| |dde yy puz

constralnts, l.e. tasks which must be executed prior to the current one.

Task execution occurs by means of an Internal procedure EXECUTE which reads data
areas from the buffer locations designated by the TCBs from maln memory Into the
triad cache memory, starts the R4 timer, and passes control to the task by means
of an ASM procedure ACTIVATE. |f the task has not run over its time Iimlt,
control wil! be passed back to EXECUTE upon Its completion which updates the
frame count In the TCB and sets an approprlate bit In the constralint word to
Indicate task compietion.

Applications routine selection and execution continues In this manner untl|
SELECT.TASK flInds a null value for a succeeding task polnter. At thls polnt the
triad notes that the task Iist Is done In system memory and sets Itself as
responsible for starting the next R4 frame, updates the R4 task I1st In maln
memory, and restarts timers and |ower rate groups which were Interrupted at the
beglinning of the current frame. Figure 1.3, also adopted from a CSDL briefing,
shows the return of the system to lower rate group tasks. |f no tasks were
Interrupted, the triad goes to an Idle process untli the next Interrupt.

Retirement

The flnal function of the R4 dispatcher Is to recognize the retire command
generated by the confliguration controller. Retlrement means that a trlad has
sustalned a permanent fallure and will no longer be able to execute tasks.
Retirement involves setting the following varlables:

triad status bit to prohiblt execution of the R4 rate group
setting the trlad busy word to Indicate this triad Is not worklng
decrementing the R4 triad counter

Inltiating the Idle process

It the retiring triad is also R4.RESPONSIBLE, It must restart the R4 dispatcher
In another triad In order to provide another triad wlth the responsibllity of
setting the time to and starting the next frame. The means of performing thls
change Is a higher priority IPC Interrupt, which will cause the recelving trlad
to halt execution of Its previous task unt!l the Interrupt Is handled.

Lﬂﬁﬂﬂmﬁmﬂn_d.lip_ai’_c_h_e_rj

The R3 and Rl rate groups have task selectlon and execution functions similar to
the R4 rate group, but are not responsible for restart, 1/0, retlirement, or
Initlallizattion., An additlional function of the lower rate groups Is the
detection of a need to continue execution of thelr applications routines beyond
the time allowed in the current frame. Should the task JIst complete markers
for the lower rate groups not be set to TRUE, a varlable designated as SLIP wil|
be decremented. The decrementing of SLIP wlll, when added to the frame count,

have the effect of delaylng the restart of the R3 rate group by one frame, and
the R1 rate group by two frames.

1.2.2. Timing routines assoclated with the Dispatchers

ORIGINAL PAGE o
OF POOR QUALITY

£ SUNSeY -- UO|4RUjWIDL oweid vy °<C°| JNMIL

uot 4
) . -ndexe ¢Y pewnsed
pue ‘sueyjo
3141 Aue puj|j 4ou
I PINOD ‘yse4 ty
) td S| pe4o|dwod
y'g ¢ dde 1°¢ § ¢de d
. e Z ONTHL
3791 SNOJS3y"° v
. 101 awedeq
- — pue Msei v
¥ 4se| ey} pejoe|es
- 12|
| eed e | R e TOvTEL
u-y g dde -u*y 5 dde
LIMYYILNT YIWIL TVAYILINI .

uojl4
i -noexe ¢y peunssd
31d1 ~ pue ‘sueyjo
™ " Aug pulj 40u
- . cH PInOD yset vy
_Sgpdde || 7°€ 4§ dde 74 S+1 pese)duod

1=ty § dde L 0 OvTEl

10

Figures 1.4 and 1.5 show the sequence of execution of varlous procedures
assoclated with the R4 and lower rate group dispatchers respectively. Those
associated with timing are under!ined. As Is evident from both figures, triads
act on the basls of tIme-generated Interrupts. The time to the Interrupts Is
placed In a register denoted as the INTERVAL TIMER and decremented at 250
microsecond Intervals until It reaches zero. At this point a timer Interrupt Is
generated.

At the beglinning of & new frame, the R4 rate group dlspatcher wlll save the
times left for Interrupted lower rate group executions by means of the
HOLD.R3.R1.TIMERS routine. As shown in flgure 1.4, the R4 dispatcher causes the
actlvation of the lower rate groups by pointing to the addresses of thelr
process state descriptors (figure 1.6) at the appropriate frames. After
completing frame initiallzation, the dispatchers Invoke applications routines by
means of the SELECT and EXECUTE procedures described above. Prior to passing
control to the applications routine, the dispatcher starts a timer which wil|
Interrupt execution should the applications routine run over the time |imit
written In Its task control block. |f an Interrupt occurs, a routine designated
as the TIMER. INTERRUPT.HANDLER Is executed. Thls procedure determines whether a
task time-out or a new frame Interrupt occurred (If the trlad Is R4
responsible), and sets up the R4 dispatcher to be restarted In the latter case,
In the absence of an Interrupt, the dlspatcher repeats the process wlth
subsequent applications routines until the Ilst Is compl ete,

Upon completion of the R4 Iteration, the timers of the lower rate groups are
restarted by the RELEASE.R3.R1.TIMERS procedure, and control Is passed to the R3
dispatcher by means of a RESUME statement and the PEND procedure executed at the
beginning of the frame. The R! timer s saved by means of the HOLD.R1.TIMER
routine, and the R3 rate group applications routines are selected, executed, and
Interrupted (I1f necessary) In the same manner as were the R4 appllcations tasks.
The R3.TIMER routines are somewhat more compl icated because the times they place
In the Interval timers must also observe the total frame +lime limit, l.e. If the
time al lowed for an applications routine is greater than the time remalning In
the frame, the Interval timer Is.set with the time remaining In the frame.

Upon completion of the R3 dispatcher in a frame where R1 Is to be run, the R1
rate group timer Is released and the RI dispatcher Is Invoked as described
above. Executlon of the Rl rate group dispatcher and applications routines Is
ldentical to the R3 executlon with the single exception of Rl timer routines
rather than R3 timer routines used for starting and stopping the Interval timer.
Because no rate groups are executed behlnd R1, there Is no need to hold or
release other timers,

1.2.3. Executlion Order

Each resident process within the triad has a process state descriptor (PSD)
resident In the cache memory which contalns a pointer to the location of the PSD
for a succeeding task. In this manner, a number of tasks can be arranged to

11

D1 SPATCHER
PREAMBLE

SELECT TASK

ORIGINAL PAGE N
OF POOR QUALITY

Figure 1.4.

KX RELEASE
TR IF R4.RESPONS! R3.R1.TINERS
)
EXECUTE IDLE BESUME
NTERRUPT? YES
NO
"TIMER. INTERRUPT .
STOP.R4.TIMER HANDLER
YES
R4 TIME.TICK
?
BURGE ~ PEND R4
12
RESUME

R4 task Invocation and procedure control

D1SPATCHER
PREAMBLE

ORIGINAL PAGE IS
OF POOR QUALITY

SELECT TASK

START R3 OR IDLE RELEASE R1
R1 TIMER TIMER
EXECUTE BESLME
TNTERRUPT? YES
NO
STOP R3 OR RI TIMER. INTERRUPT.,
TIMER HANDLER
YES
Re.TIME.TICK .
?
PURGE - BENQ R4
BESUME
13

-

FIGURE 1.5. R3 and R1 Task In\-/ocaﬂon Procedure Control Flow

execute in consecutive order. Changes to this order are implemented by the
PEND and ACTIVATE routines as depicted in figure 1.6 (adopted from a CSDL
briefing chart). Process X is currently being executed by the triad, and is
designated as the active process. A PEND(A) command will cause process A to
be inserted in the task execution order as shown in the second column in
figure 1.6, The ACTIVATE(B) command will immediately transfer control to the
process B as shown in the third column of figure 1.6; the previously active
process continues at the conclusion of process B.

The response to interrupts is depicted in figure 1.7, adopted from a CSDL
briefing chart. Prior to the interrupt, a process denoted as Z is active in
the triad, as shown by the "AP" marker, After the interrupt occurs, the
address of the process Z PSD is saved in a location of the interrupting
process PSD, and the interrupting process becomes active. At the conclusion
of the interruption, a RESUME command is executed, and the PSD of process Z
becomes active once again.

14

Buj 1pueH eiealoy pue Pued *9°| Fun9i4

(3uypuad) 2

ORIGINAL PAGE 9
OF POOR QUALITY

(8uypuad) y (3ujpuad)
(3uypuad) g (aa7328) ¥
(8uypuad) x (sa1308) X
(aat308e) ¢
Y4

$35S3008d ONION3d

./“\/'N/'\/"'\
>

/7 TN,
o
>4

SS3004d 3AI1LOV
(9)3LVAILDY (v)anagq

15

BuypueH 4dnausequ) *£*| 3¥N9I14

(ea1300) Z ssadoad

Burpuad) z ssadoad (@n330E) Z ssadoad

(30®) ssadoad 3dna

$63904d I
ON1LdMYYALN| ON | LdNYYALN|
Q3LdNYYAIN
Z $53004d
IA1LOV
RETIE $5300¥d , oL
7 $S300ud N1 LANNYILNI

IHNSHY LdMIYILNL

$S3004d
ELYRR |

16

1.3. COVERAGE OF THE PRIMARY ROUTINE FAILURES

The conception and the design of the acceptance tests are based on the potential
fallures derived from the description of the dispatcher and assoclated routines
contalned In sectlon 1.2. It was found that fault trees alded the systematizing
and documentation of the acceptance test development, and therefore, these trees
are presented In thls section,

Flgure 1.8 Is the top-level fault tree which shows that fallure of any of the
filve functions associated with all rate group dlspatchers (l.,e. the flve
functions of the R4 dispatcher and the task dispatching function of t+he R3.RI
dispatcher) will result In a fallure of the entire dispatcher. Fallures of the
first three fault categories are expanded In subsequent dlagrams referred to in
the trlangles under the event ident!flications. Fallures In reconfliguration and
1/0 were not covered In this work. The numbers given In the clrcles below these
events refer to specific section numbers where the relevant acceptance test Is
descrlbed.

The reader should note that any input to an "OR" gate causes its output to be
true. Thus, in order for an output fault given at the top of an OR gate to be
detected, all inputs must be detected. However, in the case of an "AND" gate,
all inputs must be true in order for the output to be true, and thus, only a
single fault need be detected in order to assure coverage.

nitialization Faults

A further development of initialization failures 1is contained in figure 1.9,
Two initialization failures would result in dispatcher error conditions:
failure to set the triad as R4 Responsible and failure to properly initialize
the rate group control blocks.

Because other functions Ilsted In section 1.2.1 under frame count initlallzation
do not necessarily lead to crltical fallures, the are not consldered expllicltly,
In a portion of the possible range, Initlallzation fallures will result In
degraded performance which s not sufficlently critical to cause the function to
be disabled, and hence, does not warrrant Invocation of the alternate dlspatcher
(which Itself provides degraded performance relative to the fully functlional
primary). The following functions were deemed to be In this category under some
conditions In restart Initiallzation:

resetting of error latches, triad busy states, and trlad statuses
Inltiallzation of the timer

lower rate groups set to be executed In later frames
reconfiguration states are set to 0

UNLOCK and IPC interrupts are set to 0

Other possible Inltiallization errors could result In condlitions more serlous
than degraded performance. For example, if all triads are set to busy and are
unable to restart the R4 processor, then there wll| be no R4 responsible triad.
The ultimate result of these errors |s the Improper execution of the rate group
dlspatchers, a condition which Is covered by acceptance tests, and hence, no

17

%

Joyd4Rds|Q dWl4 Y4 Joj eeu] t|req |eAs] doj

¢3

V4

VA

"8°1 3un9I4

Aw

wNIV4 0/)

INW3Y13Y

WNUV4
ONINIL

NNV
H3IGHWO NOILAO3X3

3HNIVY
NOLLVZITWILINI

U

S1ivd
¥3IHOLYdS 1G
AW bd

18

addltional provislons are necessary.

Execution Order Fallyre

This fallure class Includes errors In frame Inttlation which causes lower rate
group dlspatchers not to be Invoked at appropriate Intervals and errors In task
selection and execution which result In fallure to dispatch all applications
routines of a glven rate group,

Flgure 1.10 shows the further development of possible fallures In thls category.
Applications tasks could elther be omitted, or they could be executed too
frequently. Omisslons of critical tasks are detected by the functional
acceptance tests of section 2, and the setting of varlables which result In too
frequent executlions of tasks are covered by the structural acceptance tests of
section 3,

Liming Fallures

Fallures of the functions described In sectlon 1.2.2 are Included In thls
category. The most apparent source of fallures Is the hardware clock, which Is
adequately covered by quadruple redundancy, hardware voting, and spares, and
which need not be protected by additional software provislons.

A second cause of failures is the R4 rate group being "stuck", a condition which
occurs under the three circumstances shown in figure 1.11. The first circum-
stance, being stuck in an R4 applications routine is handled by the interval
timer acceptance test described in section 2. The second, R4 stuck in task
selection group and the third uninterruptible ASM sequence, are covered by a
single acceptance test described in section 3.

1/0 and Retirement Fallures

Because the 1/0 protocols were not described In detall In ref., 4, It was not
possible to devlse a set of acceptance tests to provide definitive coverage.
However, the relatively powerful "wrap around" acceptance test described In
section 2.5 wlil ald In covering this fallure, and based on final design of the
1/0 procedures, can be Incorporated with supporting structural acceptance tests
to provide complete coverage.

The reconfiguration strategles have been developed and documented elsewhere, and
do not fall under the scope of the dispatcher, However, once the retlrement
command Is glven, the dispatcher Is responsible for carrying I+ out. Sectlon
3.6 descrlbes the retlrement acceptance test.

Possible Fallures Introduced by Recovery Blocks

Figure 1.12 1s a fault tree showlng the possible fallures Introduced by the
recovery block structure for the dispatcher. As Is shown, fallures can be due
to a primary routine fallure coupled with a fault In elther the acceptance test
or the alternate routine as well as a type Il error (l.e. false Indlication of
fallure) by the acceptance test and fallure of the alternate routine. Coverage
of acceptance test fallures Is handled by both the critical word reset
acceptance test, whlch ensures that a proper critical word mask Is used by the
dispatcher acceptance test, and the frame count acceptance test, which ensures

19

StIneJ uof4ez||RI4(U] *6°| 394

o e e

|
D ATE33084 - ATW34OEd - AT3d0ud
| g3L1003X3 LON .Y 02LAD3X3 10N €Y 031N03%3 LON ¥ | | N .
| ,
.) | AMV : | A”v ,. Aqv AJ_”V
33NV WOILIED :) , .
Nl 1053y A3 A1L03w400 AT43d0¥d AT¥3408d ATd3a0ud
hLosmon . NI TIVIVA 02:M03X3 10N 1Y 0UMO3X3 10N €Y 03UM03X3 LoN Y
&= = | o
ce V.
-l o
=5 . .
w W . SN_é.:._u." 103WU0INT $X0018
& u nﬂm“ﬁ_ma.wanh:o 13s U0N TOUINOD dNO¥Y
oY)] 3781 SNOSTH® 1Y 31V 30 S3INTVA o
o

Hg
. NIV —
- ~ zo_..~<~_.~<_.:z_

o

sedn|jed JepJdp uo|4nosex3

youy3 3nOQ*Y

¥o¥y3 4118

UOHY3 INNOD® W4

ORIGINAL PAGE 8§
OF POOR QUALITY

N

AUNINOIYS 00L
0310033 SHSVL

3y

*01*1 3¥noNd

dNOYO 3ivy 1Y
NI Q3LLIHQ SNSVYL

dnOY9 3ivy O
Rl G3LLING SXSVL

dNO¥Y 31vy tH
NI GILLIWNO SASVL

@

Q3LLINO SXSVL

v

3umiivd
H3GY0 NOLIROIA3

21

v

ORIGINAL PASE #

sedn|jed Bujwil *11°| 39N914

® 0 0 0©

\’
, (22
ONOJS3Y 10N IvYd td) YOUH3 N9IS30 -
$300 avidl M3N ¥03 IWIL *dS34 Y QY Yl SUMOJ0 LdNYY3iNM|

3YVALI0S 3NILNOY 135 A3d0ud 10N
SNO1 1¥O1 IddV YMIL WANALNI

© o & o ©

)
’ NI LNOY
. E:xzwwzm‘uwm__uw u._m_ww__wmwwz._‘mu NO! 103735 mzo:wuxww< -
0L SIIV4 QVIuL 2781 SNOJS 34" bY ON oL 3uNTIv4 H3LN N sovi 1 s NI S00LS
— ‘ o~
N
1]
-,;mg.‘ T Am_ﬁ @ FS“ ;
[v 03av01 : dN0YUO 3LVY
= S LaM3LNI mun,_wum_mwnmw,__ JYNIVE 50D v NI SONLS -
< . 0L 3SHOJSIY ON ' .
P j
(o4
mw ;
(o]
0.
w
O

S3Lneq 3201y AudA008y "Z1°T JYNYI4

23

ORIGINAL PAGE g

STivd
Y3HOLVdS 1O

HOMY3
YOHHI 1353 INNOD
QJOM WOILIMD VY4
V8 Q3TVO *NdO
STV 10354900 S11vd Slivd Siv4 103130 ¢l S1ivd S1ivd
J1IVNY3LTY 1531 3IONV 130DV JLVNSILWY AUV 4 1S31 30NV1d300V AHVYWI ¥d
W. ONY ONY ONY
=
<
)
Q P
o ¥0
o (
o
a
[T
o

that the dlispatcher uses the proper frame when testing for the executlion of the
'Rt and R3 rate groups. ' ¢

d

1.4. SOFTWARE ERRORS NOT COVERED BY THE D|SPATCHER ACCEPTANCE TESTS

"The scope of both the functional and structural acceptance tests has been
limited to the failures of the dispatcher and supporting routines. AED
procedures not covered by the accepted tests jnclude LOCK/UNLOCK, IPC.INTERRUPT,

and the reconfiguration tasks.

24

SECTION 2 - FUNGTIONAL ACCEPTANCE TESTS
|' - ‘ i »

As noted In sectlon 1.1, functlonal acceptance tests are those which test the
output of a software module for the achlevement of a functlonal obJective. Such
tests have been developed for the dlspatcher, routines setting the Interval
- timer, and functlons assoclated with 1/0 . -
, : . N

The dlspatcher acceptance test checks memory locatlons In which critical tasks
from each rate group have set blts In the course of thelr execution. If the
words Indlcate that all critfcal tasks In the glven frame have been run, the
dispatcher acceptance test resets the critical words for the next frame. Two
additional routines that are assoclated with thls acceptance test check both the
Input frame count and the output reset critical words. Detalls of the dlsptcher
acceptance test are described In sectlion 2.1.

The Interval timer acceptance test checks the Interval timer after the executlon
of any routine which can affect the timer value. |If the time Is less than that
of the current frame, a normal exlt occurs. Detalls of the Interval timer

~acceptance test are described In sectlon 2,1.

The 1/0 acceptance test checks an Independent counter showlng the number of
times the buffer has been accessed and compares 1+ wi+th the frame count.
Without a detalled knowledge of the flnal 1/0 protocols used for +the FTMP, It
can not be concluded that thls acceptance test provides a definltive
determination of normal executlon, but It Is antlclpated that 1t will be useful,
especlally If comblned with addltlonal speclfic structural acceptance tests,

Detalls of the 1/0 acceptance test are described In section 2.1. '

Finally, although not deflned speciflcally, each critical applicatlions rout!ne
wlll have Its own functlonal acceptance test which checks the vall Idlity of Its
Input and output. Tests for determining whether constralnts have been met for
~the running of appllications routines Is also part of the functlon of these
acceptance tests.

25

A

B
Bt —J
8% «L
L D
& O
wd

zS
0
oG o
o u
loNe]

YIHILYASIO vile

1353y Quyon
0yoM WILLIYWD

A

INNOD 3Wvdd
S1S31 3INVLd3Y

Y3I0NVH

TINITY3WIL

1dn¥Y3ANI
Y3WIL

SUSYL
IWvdd SNOIA3Yd
40 NOTLAI3X3

26

" ORIGINAL FAGE 8
' OF POOR QUALITY

2.1, DISPATCHER ACCEPTANCE TESTS

»
[

As noted above, the overall dispatcher acceptance test scheme conslsts of
checking the values of critical words which Indlcate that tasks cruclal to
malntalning stable flight conditions have been run In each rate group. However,
because the critical task group varles as a function of the frame count, a
second test must ensure that the dlispatcher uses a proper vaiue for thls
varlable. Flnally, the critical words must be reset at the beginning of every
frame; the successful executlon of thls functlon verlfied by a third
acceptance test. Thus,, a total of three modules for the acceptance tests
assoclated wlth the dispatcher have been developed:

Test for Fallure of the DIspatcher. The overall functlonal tests for the
dispatcher Is/to determine whether all critlcal tasks within a glvir rate

group have been executed at the appropriate times. Fallures of a Mumber
of functlons are detected by thls test. This test Is further described In
section 201.1.

e

Test for Fallure of the Frame Counter. Fallure of the frame counter can

result In the Improper timing for executlon of lower rate groups. |f the
counter Is not Incremented or Is Incremented by greater than one, I+ is
possible that lower rate groups will not execute at all. The test for
proper Incrementing of the frame counter Is described In sectlon 2.1.2.

Critlcal Yord Reset Acceptance Test. Fallure to reset the critical word

can result In Improper assessment of whether the rate groups have been
completed. At the conclusion of the dispatcher acceptance test, the
critical word Is compared with Its Inltlal value stored In memory. |f
these values do not agree, then the alternate scheduler-dispatcher Is
Invoked. This test Is further described In section 2.1.3.

The polnt In the frame at which these tests are executed ls shown in figure 2.1.
After the R4.RESPONSIBLE trlad recelves an Interrupt signallng the beglnning of
a new frame, the acceptance tests are Invoked, and the R4 dlspatcher Is

restarted.

2.1.1. Dlspatcher Critical Word Acceptance Test

The speclflcatlion of the dispatcher requlres that all R4 tasks wlll be completed
every frame, all R3 tasks every second frame, and all Rl tasks every elghth
frome. The acceptance test wlll rely on the exIsting clock and frame count to

verlfy that this functlonal requlrement [s met.. However, an Independent
acceptance test will verlfy the frame count by means of two Independent counters
(see sec. 2.1.2). The acceptance test will check a critical word for the
approprlate rate group. [If thls word Indlcates that all tasks have been
completed (by being set to all 1's), then It wlll reset the word (In a marner
thet will also be fault-tolerant, see sec. 2.1.3) and proceed to test the next
lower rate group as approprlate. If a discrepancy In the critical word Is
detected, the acceptance test wlll Invoke the alternate dlspatcher.

27

Figure 2.2 shows the dispatcher and accompanying fault tolerant provisions
(this configuration is the same for all rate groups) invoked at the beginning

of a new frame. |f the dlspatchor acceptance test Is satPsfactory,. the primary
dispatcher Is ro-executed as shown In the left-hand branch of figure 2.2, and If
not, the alternate dispatcher Is executed. Critical appllcations routlnes will
set approprlate bits In the critical word for that rate group.)

Flgure 2.3 Is the Nassl|-Schneldeman dlagram of the dlspatcher acceptance test
and table 2.1 shows the requlirements. As each rate group critical word, Is
tested, It Is reset, and the reset functlon In turn Is tested (setion 2.1.3).
If any rate group crltical word Is not satlsfactory, the alternate dlspatcher Is
Invoked. ‘ il

2.1.2. Frame Count Acceptance Test Requirements

The frame count acceptance test Independently verlifles that the frame counter
has been properly Incremented. It Is Invoked prior to executlon of the
dlspatcher as shown In flgure 2.1. Figure 2.4 Is an Nassi-Schneldeman dlagram
for thls acceptance test. As shown In figure 2.5, *two Iindependent frame
counters, NEW.FRAME and OLD.FRAME (each counting from 0 to 15) In thls
acceptance test are used to ensure that proper Incrementing has been carried out
within the test. A comparison Is then made wlth the dispatcher frame countling
varlable FRAME.COUNT. |f a discrepancy Is found, all frame counts are restarted
at 0 without the need for the alternate scheduler-dispatcher. However, If a
dlscrepancy perslsts for an arbltrary number of consecutlve tlmes (we have
chosen three consecutive times), then the acceptance test Invokes the alternate
scheduler-dispatcher. The requirements for the frame count acceptance test are

glven In table 2.2
2.1.3. The Word Reset Acceptance Test

1f the critical words are not properly reset, the dlspatcher critical word
acceptance test may fall to detect that the dispatcher has not Invoked all
appllcatlions tasks. Most Ilkely, the fallure of the critical word reset will
result In the flnal word (at the end of the frame) Indicating that all critlcal
tasks have not been completed when they all have actually been run. However,
there Is also the possibillty that the critical word Is not properly reset and
that the tasks are notcompletely executed. The dispatcher critical word
acceptance test wlll then Indlcated proper completion even though this has not
been achleved. :

The requlrements proposed for the word reset acceptance test are glven In table
2.3, and flgure 2.6 shows the Nassl-Schnelcdeman diagram.

28

)

.

TABLE 2.1. Dlspatcher Crlf!cgl'Word Acceptance Test Requlrements
1} : . »

i

1. The dispatcher critical word acceptance test checks rate group'crlflcal

words at the beglnnings of the approprlate frames after the frame count
has been verifled by an Independent acceptance test. s

a. The R4 crltical word Is checked at the beglnning of every frame:,

b. The R3 critical word Is-checked at the beglnnlng of even frames
(l.e. 0, 2, 4, 6, 8, 10, 12, and 14).

c. The Rt critical word Is checked at the beginning of frame 0 and 8.

2. |If the rate group critical word Is correct, the dlspatcher acceptance test
wlll reset 1t. A separate acceptance test verlifles Its re-Initlallzalon

3. |If the rate group critical word 1s not correct, the dispatcher acceptance
test wlll Invoke the alternate scheduler/dIspatcher.

29

DISPATCHER ACCFPTANCE TEST 0K?

(FIG.2.3) g
YES Ko,
W . - o
EXECUTE PRIMARY DTSPATCHER
EXECUTE APPLICATIONS TASK. (TYPICAL) ENTER
TASK ACCEPTANCE TEST OK? ALTERNATE
CO TO ALTERNATE TASK OR SET SKIP (FIG. 6)

FLAG

SET BIT IN CRITICAL WORD

DO UNTIL TASK LIST IS FINISHED

Y,

FIGURE 2.2. Fault Tolerant Provisions for the FTMP Dispatcher

30

P CORIGINAL PAGE I
‘. OF POOR QUALITY

READ R4 CRITICAL WORD C ’ ‘

R4 CRITICAL WORD OK?

YES : ; A

RESET R4 CRITICAL WORD ' ' .
INVOKE CRITICAL WORD RESET ACCEPTANCE TEST ‘
R .

0DD FRAME?

YES NO

READ R3 CRITICAL WORD

R3 CRITICAL WORD OK?

YES ~ NO

RESET R3 CRITICAL WORD

INVOKE CRITICAL WORD
RESET ACCEPTANCE TEST

FRAME.COUNT MOD 8 # 07

YES NO

READ R1 CRITICAL WORD

R1 CRITICAL WORD OK?

YES j NO

RESET R1 ‘ : :
CRITICAL WORD' INVOKE ALTERNATE

]

DISPATCHER

INVOKE CRIT.
WORD RESET -
ACC. TEST ' ‘

FIGURE 2.3. Dispatcher Critical Word Acceptance Test Module

31

Ty
TABLE 2.2. Frame Count Acceptance Test Requlirements

1. The frame count acceptance test wlll be Invoked every frame as an R4
critical appllications routine, '

3.

a. The frame count accepfance test wlll set a bit In the R4 critical word.

b. The dlspatcher critlical word acceptance test wlll check_}he R4 critical
vord to verify that thls acceptance test has been run In the previous

frame, " oo

The frame count acceptance test wlill Increment I+s own Independent frame
counter, and then ensure that It has been properly Incremented.

a. The acceptance test frame counter, NEW.FRAME, wll| be Incremented In the
range 0 to 15 (by using NEW.FRAME modulo 16).

b. The difference between NEW.FRAME and a second acceptance test counter,
OLD.FRAME wlll be checked. !

If the difference Is 1, then OLD.FRAME Is set equal to NEW.FRAME
(l.e. NEW.FRAME Is properly l[ncremented)

If the difference Is not equal to 1, the NEW.FRAME, OLD.FRAME,

and FRAME.COUNT (the primary dlspatcher freme counter) are set

+0 15 so that tasks for all three rate groups will be executed

In the subsequent frame. An error counter, FRAME.FAIL.COUNTER,

s Incremented and checked to see that It has not reached a preset
IImlt (3 Is chosen at present). |f FRAME.FAIL.COUNTER has
exceeded the IImlt, then the alternate scheduler-dlspatcher

Is called. |f It has not, then the prlimary dlspatcher Is

Invoked at the new frame count.

I+ the acceptance test frame counter has been properly Incremented, It -
Is compared to the primary frame counter.

a. If the acceptance test frame counter and the primary frame counter
agroe, FRAME.FAIL.COUNTER Is set to zero and the primary dispatcher Is
Invoked, ' s : :

b. |f the primary frame counter and the acceptance test frame counter do
not agree, NEW.FRAME, OLD.FRAME, AND FRAME.COUNT are set 1o 15 so that
all three rate groups will be executed In the subsequent frame.

_FRAME.FAIL.COUNTER Is Incremented and checked to see that I+ has not
reached a preset |Imit (3 Is choen at present). |f FRAME.FAIL.COUNTER
has exceed the |Imlt, then the alternate dlispatcher Is called. If It
has not, then the primary disptcher Is Invoked at the new frame count.

32

ORIGINAL PAGE 3
OF POOR QUALITY

THCREMENT HEW. FRAMF S co
NEW.FRAME = NEW.FRAME+1 MOD 16 :

NEW.FRAME-OLD .FRAME=1 OR -15 :
- ? ‘ NO

YES

UPDATE OLD.FRAME |
OLD.FRAME=NEW,FRAME

MEW.FRAME =FRAME . COUNT
NEW.FRAME=15

VES ? NO OLD .FRAME=15
’ - FRAME.COUNT=15
INCREMENT FRAME.FAIL

FRAME .FAIL=0 - A : -
| FRAME.FAIL<=CRIT |
YES - NO

FRAME,FAIL=0
ENTER ALTERNATE
DISPATCHER

ENTER PRIMARY DISPATCHER

FIGURE 2.4. Frame Count Acceptance Test Module

33

TABLE 2.3. Critical Word Reset Acceptance Test Requlrements

The critical word reset test Is called by the dispatcher acceptance
test,

The memory location containing the rate group critical word which has
Just been reset Is compared with the memory locatlion contalning the

_Inltlal value to which the word should have been changed.

" If these values agree, normal executlon of the primary dispatcher Is

contlnued,

If these values do not agree, then the alternate dispatcher Is Invoked.

34

sJejuno) ewedy °¢°Z JN9IA

HOLVdS1a TVWION

1Yv1S3y

INNOD* VY

Y3LINNOD YIHOLYCS1Q A¥VWIYNd

VYL MIN

VY4

)

AL EMR Y

SHIINNOD 1S31 3ONVLA300V LINNOD 3Wvdd

35

O |NPOK 4591 80oUR4dedOy 48S6Y PIOM [@D14140 °9°Z FWN9I4

NOILNJ3X3

d3HO1VdSIQ JLYNYILTY INOANI TYWYON 3INNILNOD

S3A

¢ AMVA YILINI = QYOM TVYIILIYD

36

2.2, INTERVAL TIMER ACCEPTANCE TEST

The Interval timer Is the cruclal system component which ensures that Interrupts
occur at the proper Interval. A total of ten AED procedures control and arm the
Interval timer: '

HOLD.R3.R1.TIMERS
HOLD.R1.TIMERS
RELEASE.R3,R1.TIMERS
RELEASE.R!.TIMER
START.R4.TIMER
START.R3.TIMER
START.R1.TIMER
STOP.R4,.TIMER
STOP.R3,TIMER
STOP.R1.TIMER

Each of these procedures must determine the time to the next Interrupt, the type
of Interrupt, load the Interval timer reglster with the appropriate value, and
arm it. Fallure to load, arm, or properly identify the next Interrupt will not
be detected by any of the previously deflned acceptance tests.

A means of detecting these fallures Is therefore included as an addltional
functional acceptance test. This test, deslgnated as the Interval Timer
Acceptance Test, ensures that the value In the Interval timer of the R4
responsibie triad Is less than the value to the next R4 frame as deflned by the
difference between R4.TICK.TIME and TIME.NOW. I[f the Interval Is greater than
the difference, or If TIME.NOW Is greater the R4,TICK.TIME, then a functlonal
error has occurred In one of the timer routines, and the alternate dispatcher Is
Invoked. Table 2.4 Iists the requirements for the Interval Timer Acceptance
test, and flgure 2.7 Is the Nassi-Schneldeman diagram for this procedure.

The reader should note that this test will not affect the values of non-R4
responsible timers. These Intervals continue to extend beyond the next R4
frame, and can not be used as back-ups to ensure the timely start of the R4
frame,

Although the acceptance test does not check for the occurrence of the
appropriate Interrupt or that R4.TICK.TIME has been set to a new value
explicitly, It does so Impliclitly through the conditlon ldentified In 4b of
table 2.4. If an Interrupt other than that for a new frame has been set at the
R4 Interrupt tIme, then the acceptance test wlll detect the failure by noting
that the R4.RESPONSIBLE flag Is still set (and hence, that no trlads are working
on the R4 rate groups). This same check can be used to ensure that a new
R4.TICK.TIME value has been entered. |f the difference between R4.TICK.TIME and
TIME.NOW at the end of the R4 task execution cycle Is less than zero (1.e. was
not reset in the R4 Dispatcher), then the fallure Is also detected.

37

TABLE 2.4 REQUIREMENTS FOR THE INTERVAL TIMER ACCEPTANCE TEST

1. The Interval Timer Acceptance Test shall be Invoked after each of the

3.

4.

5.

following routines Is called:

HOLD.R3.R1.TIMERS
HOLD.R1.TIMERS
RELEASE.R3.R1.TIMERS
RELEASE.R1.TIMER
START.R4.TIMER
START.R3,.TIMER
START.R1.TIMER
STOP.R4 . TIMER
STOP.R3.TIMER
STOP.R1.TIMER

¥ the triad Is not R4.RESPONSIBLE, and the R4 dlspatcher Is not actlive,
the acceptance test will return control to the calllng routine.

If the R4 dIspatcher Is active, the acceptance test will compare the

value of the Interval time with the maximum permissible R4 Iimit, If
the value of the limit Is exceeded, the acceptance test will Invoke

the alternate dlspatcher.

If the triad Is R4.RESPONSIBLE, the acceptance t+est will Invoke the
alternate dispatcher 1f elther of the following conditions Is mets

a. RA.TICK.TIME - TIME.NOW < INTERVAL.TIMER
b. R4.TICK.TIME = TIME.NOW < 0

¥ nelther of the conditlions of (4) are met, then the acceptance test
wll| perform a normal ex|t and return control to the callling routine.

38

4501 eoueideddy Jew|| |RAJSLU| */°Z 3YN9|4

1IN ILYNYALTY IHOAN] N | JLVNYALTV 3NOAN|
TN
ON sax | on
! $3A
e 0 > MON*IWIL - BWIL*MOIL°bY B0

LT VXYW < ¥3WIL TVAYALNI (MON*FWIL = WIL*XOIL*PH) < ¥IIL IVANILN]

ON S3A Y3WILIVAYILINT av3y
$o3NL = 3IAILOV* 4

ON S3A

¢ 3JTBISNOJSIY YN aviyl SI

39

2.3. INPUT/OUTPUT ACCEPTANCE TESTS

In additlon to the acceptance tests dealing with execution of the dlspatcher,
the Input/output routines must also be tested. The test criterion s the number
of times that a data buffer Is accessed In a glven time period, and this is
compared with the frame count appropriately adjusted for even and odd frames as
deflned In the requirements shown In table 2.5.

Because the 1/0 procedures for the MIL-STD 1553 bus were not within the scope of
thls work, no speclfic recommendations will be made. However, some general
comments on the nature of the test are described here.

The 1/0 acceptance tests verify that the dispatcher has invoked the [nput/output
routlines In the proper sequence, and that the upcoming values which are used by
the appllcations tasks are reasonable relative to those which had been used In
the previous cycle. As currently concelved, the dlspatcher reads In the data
for all rate groups to be executed In a given frame during the R4 frame
Inl+lation from a buffer location to which data as constantly belng transmitted.
The procedures performing this task, RX.IN() and RX.OUT(), are executed as part
of the R4 dispatcher.

There are two major acceptance tests: (1) a test Invoked by the dispatcher to
determine that the buffers of each of the data group have been accessed at the
appropriate rates (including an even/odd test), and (2) a test for the
reasonableness of each data point, I.e. that the point varies In a reasonable
way from (e.g. Is It within a certain range of) the previous point.

In order to verlfy that the data group access counters have been checked, the
1/0 acceptance test must be an R4 critical task (whose execution Is noted In the
critical word). The requirements for this acceptance test are given In table
2.5'

40

TABLE 2.5. 1/0 ACCEPTANCE TEST REQUIREMENTS

1. The number of times that a data group has been accessed will be
compared with the frame counts,

8. Data groups assoclated with R4 tasks will have counters that will
be compared with R.FRAME.(RG4).

If the data group counter equals R.FRAME.(RG4), then the counter
will be Incremented.

if the data group counter Is greater than 15, then the counter
wili be reset (to modulo 16) prior to belng compared with the
R.FRAME.(RG4) varlable.

If the date group counter does not equal R.?RAME.(RG4), the
alternate dispatcher will be called.

b. Data groups assoclated with R3 tasks wil| have counters that wil|
be compared with R.FRAME(RG3).

If the data group counter equals R.FRAME(RG3), then the counter
will be Incremented.

If the data group counter Is greater than 8, then the counter
will be reset (to modulo 8) prior to belng compared with
R.FRAME(RG3) .

If the data group counter does not equal R.FRAME(RG3), then the
alternate dispatcher wlll be called.

¢. Data groups assoclated with Rl tasks will have counters that will
be compared with R.FRAME(RG1).

It the data group counter equals R.FRAME(RG!), then the counter
will be Incremented.

If the data group counter Is greater than 2, then the counter will
be reset (to modulo 2) prior to belng compared with R.FRAME(RG!). -

It the data group counter does not equal R.FRAME(RG1), then the
alternate dispatcher wll| be called.

2. Within each applications task, a data acceptance test wlill determine
whether the Input is reasonable (l.e. Is within an acceptable range of
the previous value).

a. |f the data Is not reasonable, the alternate applications task wil| be
Invoked

41

1"}

3.

4.

OR

b. if the data Is not reasonable, then the applications task wlll use a
backup data module.

(the use of elther alternatlve may be dependent on the specific nature of
each appllications task, fllight conditions, and general practicallty)

Each rate group will have an acceptance test to ensure that the
appropriate (even or odd) buffer Is belng accessed.

The 1/0 acceptance tests will be R4 critical tasks.

42

2.4. APPLICATIONS ROUTINES

I+ 1s assumed that each of the applicatlions routines will have [ts own
acceptance test to verify correct execution. However, In additlon to testing
for the valldity of output, these acceptance tests will perform two additlonal
tests on the operation of the dispatcher: that constralnts have been met and
that the critical word blt has been set for this routine.

The setting of critical word bits wlll occur at the beginning of each
applications routine, and a function of the appllications task acceptance test Is
to ensure the appropriate value of the critlical word at the concluslon of task
executlion,

Testing for the violation of constralnts Is most efficiently handled on the
applications task level as part of the check for the valldity of Input.
However, fallure to meet constralnts Is a dispatcher fault and should result In
Invocatlon of the alternate dispatcher If such a fallure has critical
Implications. Thus, In the event that constralnts have not been met, the
applications routine will reset Its bit in the critical word to Indicate that It
has not run. When the dispatcher functlonal acceptance tests are run, they will
detect fallure to execute a critical task, and will Invoke the alternate
dispatcher.

43

SECTION 3 = STRUCTURAL ACCEPTANCE TESTS

Structural acceptance tests check sections of code to ensure that key varia-
bles have been set and functions have been executed. In section 1, the
coverage of these tests is shown to be particularly important. Specific
applications of structural acceptance tests are described for the following
modules or subfunctions of the dispatcher:

SLIP and R.DONE - Because the functlonal acceptance test requires both
varlables as criteria for declding whether to read the critical word, errors
In these variables as well as errors In the critical word will not be
covered without assurance of the correctness of these lnputs. Two
acceptance tests described In section 3.1 detect these fallures.

STUCK IN R4 FRAME - This condition can lead to the delaylng of the next R4
frame Inltiation to such an extent that critical tasks wlll not be executed
at thelr design rates, Fallure to complete the current R4 frame In timely
manner |s detected by the acceptance test described In sectlion 3.2.

KICK = {f an R4 ,RESPONSIBLE +rlad retires wlthout designating another +riad
to restart the new frame, then the entire task schedullng and dispatching
function will be lost with no Indication of fallure by the acceptance tests,
which will not have been Invoked. An acceptance test verlfylng that KICK
has been successfully executed Is described In section 3.3.

R4A.RESPONSIBLE - A related task Is the ensurlng that one and only one triad
Is R4.RESPONSIBLE. Fallure of the R4.RESPONSIBLE trlad to Invoke the new
frame will be detected by the Interval Timer acceptance test described In
sectlion 3.4,

UNINTERRUPTIBLE CODE - Sectlons of uninterruptible ASM code In the FTMP
operating system may lead to Infinlte loops which would ultimately result In
fallure to restart the R4 frame | f executed by the R4.RESPONSIBLE triad.
The unlnterruptible code acceptance test described In section 3.5 covers

this error,

RETIREMENT - Fallure of a triad to properly respond to a retirement command
can result In a pathological condition with severe system consequences,
This condition will be detected by the retirement acceptance test descrlbed
In sectlion 3.6.

44

3.1. ERRORS IN SLIP AND R.DONE

The DlIspatcher Acceptance Test will not detect errors In the setting of SLIP and
R.DONE for lower rate groups. As a result, two structural acceptance tests are
necessary In order to ensure that these varlables are properly set. They must
detect the following fallures:

(1) the fallure of lower rate groups to complete the Iterations within a
certaln time perlod manltfested by exceeding a minimum value on SLIP, 1.6,
the most negative value It may assume (which may be altered In the course of
flight), and

(2) the detection of fallure of a rate group to be marked as complete as It
finlshes Its task |ist,

A third fallure, setting RX.DONE to TRUE when the rate group has not comp | eted
execution wll| be detected by the functlonal acceptance test of the dispatcher,

3.1.1. MaxImum Absolute Yalue for SLIP

Thls test, whose requirements and N-$ dlagram are shown In table 3.1 and flgure
3.1, compares SLIP with a lImit set at the maximum tolerable schedule sl lippage
rate for each flight mode. This limlt, designated as MINSLIP, Is assigned a
value during the dispatcher Inttialization, and may be altered In the course of
the flight, MINSLIP Is changed by an applications routine which has an
assoclated acceptance test.

An additional fallure, the decrementing of SLIP when the lower rate group has
completed Its task Il1st, Is also covered by thls test., If thls decrementing Is
more frequent than allowed for by MINSLIP, the alternate dispatcher wlll be
Invoked. An Implicit assumption of thls scheme Is that the degraded execution
mode resulting from the too frequent execution of lower rate groups Is
preferable to the Invocation of the alternate dispatcher.

3.1.2. RX.DONE not set to TRUE when task |Ist executlon completed

Thls test will compare the first task In the rate ﬁroup task |1st, contalned In
the the array CONTROL focation 0, with the next task to be executed by the rate

group, contalned In CONTROL(1). |f these two are the same, It Implles that the
previous Iteration has been completed, and R.DONE for this rate group should be
set to TRUE. If not, the alternate dlspatcher Is Invoked. The requirements for
this acceptance test are shown In table 3.2, and the corresponding N-S dlagram
Is shown In figure 3.2,

45

2.

TABLE 3.1. Requirements for the SLIP Acceptance Test

The SLIP value acceptance test Is Invoked by fﬁe R4 dlispatcher at
the beglinning of each frame,

The absolute value of SLIP Is compared to It+s maximum limit. I £
exceeded, the alternate dispatcher Is Invoked.

1f SLIP Is greater than zero, the alternate dispatcher Is Invoked.

The value of MINSLIP is set as part of the initialization section of the
R4 dispatcher. It is altered at the appropriate flight mode changes by a
critical applications routine with an associated acceptance test.

TABLE 3.2. Requlrements for the RX.DONE Acceptance Test

The RX.DONE acceptance test Is Invoked by the R4 dlspatcher at the
beginning of each frame.

The values of the two elements In the array CONTROL of the lower rate
group PCB'S are compared. The first element Is the polnter to the
first applications routine of the lower rate group, and the second
element Is the pointer to the next task to be executed when the
dispatcher |s called.

If the value in CONTROL(1) is null, and the RX.DONE variable for that rate
group is FALSE, the alternate dispatcher is invoked.

46

SLIP < MINSLIP

?

YES NO
INVOKE ALTERNATE DISPATCHER NIL
FIGURE 3.1. SLIP Acceptance Test
RX.CONTROL(1)=NULL AND R.DONE=FALSE QR
RX .CONTROL (0)=RX.CONTROL(1)
, ?
YES NO

INVOKE ALTERNATE DISPATCHER

NIL

FIGURE 3.2. R.DONE Acceptance Test

47

3.2. STUCK IN R4 ACCEPTANCE TEST

Acceptance tests described In thls section and In section 2 serve to ensure that
the R4 dlspatcher will be re-entered at the start of a new frame under all
clrcumstances. However, If the R4 tasks are belng dispatched late or some other
disorder exists within the R4 dispatcher, then no error condition wlil be
detected. The purpose of the STUCK IN R4 acceptance test Is to ensure that If
there Is a delay In the dispatching of the R4 tasks, the delay Is within some
previously deflined acceptable Iimits.

Requirements for the test are shown in table 3.3, and figure 3.3 is the
corresponding N-S diagram. The test uses an applications routine selection
counter, R4.APP,COUNTER, which Is Inltlallzed at the beglnning of each R4 frame
and Is Incremented Immedlately after the successful selectlon of an R4
applications task. The expected completion time for the R4 frame Is determined
by the difference between TIME.NOW and R4.TICK.TIME, the time at which the
present R4 frame was started. I|f this difference Is greater than R4,PERIOD,
then R4.APP.COUNTER |s compared to a |imlt denoted as R4.LATE.LIM, which Is the
minimum number of tasks expected to be executed by the end of the frame. |If
R4 .APP.COUNTER Is less than R4.LATE.LIM, the alternate dispatcher is Invoked.

R4 .LATE.LIM can be dynamically changed during subsequent cycles of the R4 task
selectlon and dispatching by means of a |inear (or other functlon) In order to
ensure that satisfactory progress Is made on completion of the R4 [teratlion
after the expected completion time. The merits of monitoring progress must be
welghed agalinst the dlsadvantages In Invoking the alternate dispatcher when the
situation Is not sufficlently critical to warrant such actlon,

48

4.

Table 3.3, Requirements for the STUCK IN R4 acceptance test

The STUCK IN R4 acceptance test wlll be Invoked after the executlion of
procedure SELECT.TASK.

An R4 applications routine counter, R4 ,APP.COUNTER, will be initlalized
at the start of each R4 frame. After the successful selection of a task,
R4 .APP.COUNTER wlll be Incremented.

If a task has been successfully selected, the acceptance test will check
the dilfference between the current time, TIME.NOW, and the time since the
R4 dispatcher was re-started (R4.TICK.TIME).

a. |f this difference Is less than R4.PERIOD, the acceptance test will
exlt without further executable statements.

b. If thls dilfference Is greater than R4 ,PERIOD, R4.APP.COUNTER will be
compared with R4 ,LATE.LIM, |If R4.APP.COUNTER is less than R4.LATE.LIM,
the alternate dlspatcher will be Invoked.

R4 .LATE.LIM may be changed dynamically If monltoring the progress of the
applications task following the expected end of the frame ls critical.

49

TIME NOW .- R4.TICK.TIME > R4.PERIOD AND
R4 .APP,COUNT < RA4.LATE.LIM

YES 7 ?

NO

INVOKE ALTERNATE DISPATCHER ADJUST LATE LIMIT

(AS NECESSARY)

FIGURE 3.3. STUCK.IN.R4 Acceptance Test

TRIAD.BUSY(RG4) <= VALUE OF CALLING

TRIAD ?
YES

NO

INVOKE ALTERNATE DISPATCHER

NIL

FIGURE 3.4. KICK Acceptance Test

50

3.3. KICK ACCEPTANCE TEST AND MODIF ICATIONS TO KICK PROCEDURES

The AED procedure KICK performs two functlons In the R4 dIspatcher: (1) to
restart the R4 rate group In other trlads once the R4 .RESPONSIBLE triad has
performed the requlsite Intlallzations, and (2) to transfer the R4 rate group to
another triad In order to ensure that i+ becomes R4 responsible should the first
triad be‘prdered to retire.

The first function Is not deemed to be critical; 1f the R4 dlspatcher does not
successfully "wake up" the other trlads, the event Itself wil| not always cause
a fatal system fallure. On the other hand, the fallure of +he second functlon
will result In there belng no R4 responsible triad, and no other Indicatlon of
the fallure with the resul+ that there will be no response to the start of a new
R4 frame.

In the design of the KICK routine as described In Ref. 4, the "klcking" triad
searches for another eligible triad to which to transfer the R4 dispatcher. If
none Is found, a normal exlt occurs, but the dispatcher is not transferred.
Thls design Is adequate for the flrst purpose described above, but not for
transfer of the dispatcher prior to retirement. It Is therefore necessary to
construct a second procedure which will Invoke the alternate dispatcher If no
other triads are avallable for the R4 dispatcher,

This second procedure, designated as KICK2, is identical to the original design
of KICK with a single exception, the addition of an AED statement at the end of
the procedure. This statement will cause control of the triad to be passed to
the alternate dispatcher should there be no other triads available for taking
the restart responsibility. Such a statement is not desirable for the transfer
of the R4 dispatcher as part of the normal triad execution. The reader should
note that this statement will be executed only under the following conditions:

(1) the last triad executing the R4 dispatcher receives a RETIRE command
from the configuration controller, and

(2) no other triad will receive the R4 dispatcher in order to set its own
R4 .RESPONSIBLE bit. '

In addition to the fault-tolerance measure noted above, KICK2 requires an
acgeptqnce test in order to ensure that control is indeed transferred to another
triad 1n the event of retirement. The requirements for the acceptance test are
shown in table 3.4, and the N-§ diagram is shown in figure 3.4, As noted in
table 3.4, the acceptance test is executed immediately after the completion of
KICK. If the value in TRIAD.BUSY(RG4) is Tess than or equal to the value of the
triad which has just executed KICK, then no other triad will respond to the IPC
interrupt to take the R4 dispatcher. Under such circumstances, the R4 rate

group will be restarted when the next R4.TICK.TIME is reached and i i
the alternate dispatcher is necessary, ’ invocation of

-

Table 3.4. Requirements for the KICK Acceptance Test

1. The KICK acceptance test will be executed Immedlately after the KICK
of the R4 dispatcher as a result of retirment occurs.

2. The acceptance test will read TRIAD.BUSY(RG4), and compare It to the
value of TRIAD.ID of the calling triad. I|f the value of TRIAD.BUSY(RG4)
Is less or equal to TRIAD.ID, then the alternate Q!spafcher wlll occur.

3. This acceptence test will not be executed when KICK Is used to transfer
the R4 dispatcher to another triad under other clrcumstances.

52

3.4. R4.RESPONSIBLE ACCEPTANCE TEST

The purpose of this acceptance test Is to ensure that the R4.RESPONSIBLE flag
has been set In at least one trlad before the conclusion of the executlion of the
R4 dispatcher. The N-S dlagram and procedure requirements are glven In figure
3.5 and table 3.5 respectively. The test first ensures that the value of
TRIAD.COUNTER, the variable used to determine what triad will be responsible for
starting the next frame, is within the expected range (0 to 2). If no other
triads are executing the R4 dispatcher, this procedure checks that both
R4 .RESPONSIBLE is TRUE and that the difference between the current time

(TIME . NOW) and the time to the beginning of the next frame (R4.TICK.TIME) is no
more than the R4 frame length (R4.PERIOD).

If another processor triad Is still executing the R4 dispatcher, then two or
more triads would be R4 .,RESPONSIBLE, a condition which could result in a number
of adverse consequences upon the restart of the R4 dispatcher. I+ Is for thls
reason that thls acceptance test will Invoke the alternate dispatcher If
TRIAD.COUNTER Is not zero when R4.RESPONSIBLE Is TRUE.

53

1.

Table 3.5. Requirements for the R4 .RESPONSIBLE Acceptance Test
The test Is invoked by the R4 dispatcher immediately before the RESUME(O)
statement,

The test will Invoke the alternate dlspafcher if any of the followling
conditlons are met:

(a) TRIAD.COUNTER < 0 or TRIAD.COUNTER > 2

(b) TRIAD.COUNTER = O AND R4.RESPONSIBLE = FALSE
(c) R4.TIME.TICK - TIME.NOW > R4.PERIOD

(d) TRIAD.COUNTER >= 1 AND R4.RESPONSIBLE = TRUE

54

4se] edueideddy 3I181SNOJS3Y" Y

*¢¢ N4

¥IHOLVAS1Q
ILVNYILTV N
INOANI
¥IHOLYAS 1 ¥3HOLVAS 10 ON S34A
1IN JLYNYILTIV IHOANI JLVNYALTV 3XOANI |
¢ Q0N¥3d°PY | yguqivdsia
> (MON®3nIL Y
- L XOIL"PY) Ny
ON s34 |ON S3A
13791 SNOJSIY° ¥y OVIHL 137181 SNOJSTH* ¥y QVIdL
ON S3A
L 1> ILNNOO*QVIYL
oz $3A

1Z< ¥O 0> ¥ILNNOD°QVidl

55

3.5. UNINTERRUPTIBLE CODE ACCEPTANCE TEST

Appendix B |Ists the serles of assembly language routines which are called by
the dlspatcher or assoclated routines and which have sections of uninterruptible
code. As Is shown In table B~2, six of these routines have conditlonal branches
or loops within them, and the possibillty of an Infinite loop due to a software
loglc, environment, or executlon error exists. |f the R4.RESPONSIBLE trilad Is
Invovied, the R4 Interrupt wlil not be acted upon.

The remainder of the system can be in one of six configurations under this
condition:

Two other triads idling.

Two other triads working on other applications routines.

One other triad working, one retired.

One other triad idling, one retired.

Both triads retired.

One triad working and one idle.

D Gl AW N -

With the exception of 5, these confligurations may be grouped Into the followling
(non-mutually excluslve) categorles:

(1) At least one trlad working.
(11) At least one trlad In the Idle process

The two acceptance tests described below are to be run under the applicable
conditions.

- 3.5.1. At least one triad working

If at [east one other triad Is performing a task, It will eventually be
Interrupted or will go to an Idle state. |f the triad recelves a timer
Interrupt, control will pass to the tIimer Interrupt handler. The acceptance
test whose requirements are described In table 3.6 and deplcted In the N=§
dlagram of flgure 3.6 Is appended at the end of the timer Interrupt handler, and
will evaluate whether the R4 dispatcher should be restarted. |f not, thls triad
Invokes the alternate dlspatcher,

There are two condltions which will cause Invocation of the alternate dispatcher
under these conditions:

(2) 1f there Is stlil an R4.RESPONSIBLE triad (l.e. the R4 dlspatcher has
not been restarted) at the expected restart time plus an allowance DELTA,
then the alternate dispatcher will be Invoked;

(b) if there are no triads running the R4 dlspatcher beyond the allowed
time, the alternate dlispatcher will be Invoked.

56

3.5.2 At least one triad In the Idle process.

All trlads In the I1dle mode will subtract the current time (TIME.NOW) from the
time to the new R4 frame (R4.TICK.TIME). If the dlfference exceeds the expected
time for the R4 dlspatcher to Invoke the KICK routine to start up other trlads
(denoted as DELTA.KICK) and other trlads are avallable for running the R4
dispatcher, the 1dling triad will Invoke the alternate dispatcher.

The Idle mode acceptance test provides coverage for the following two sltuations
(1) when the R4 dispatcher Is stuck In an uninterruptible Infinite loop after
restarting the current frame or (2) when the last trlad leaving the R4
dispatcher Is stuck prior to designating Itself as R4.RESPONSIBLE. The reader
should note that the STUCK IN R4 acceptance test providas coverage In the event
that the dispatcher Is unduly delayed, but not under thls conditlon.

57

5.

TABLE 3.6. Requirements for the Uninterruptible Code Acceptance Test -
At Least One Trlad Is Working

The Uninterruptible Code acceptance test will be Invoked at the
beginning of the TIMER.INTERRUPT.HANDLER routline.

A constant DELTA deflned as expected time to enter the R4 dlispatcher
and set R4.RESPONSIBLE to FALSE will be deflned during sysfem
Inttiallzation.

The test will read RA.TICK.TIME and TIME.NOW. If TIME.NOW -
(R4.TICK.TIME + DELTA) Is less than or equal to zero, a normal return
will be effected.

If TIME.NOW - (R4.TICK.TIME + DELTA) Is greater than zero and the triad
s R4.RESPONSIBLE, the test will determine the contents of the APSD.

a. |f the APSD = R4.PSD, a normal return will occur.

b. |f the APSD Is any other quantlty, the alternate dlspatcher
wll]l be Invoked.

IF TIME.NOW - (R4.TICK.TIME + DELTA) Is greater than zero and the triad
not R4.RESPONSIBLE, the test will check the TRIAD.COUNTER (i.e. the
number of trlads executing the R4 dispatcher).

a. The trlad witl determine whether any other triad Is R4 .RESPONSIBLE.
If no other triad Is R4.RESPONSIBLE and the TRIAD.COUNTER Is greater
than or equal to 1, then a normal exIt will occur.

b. If another trlad Is designated as R4 .RESPONSIBLE beyond this tlIme
Iimlt, the alternate dispatcher will be Invoked.

is

c. |f the TRIAD.COUNTER Is zero, the alternate dlspatcher will be Invoked.

58

Bu|ssom peja] :4se] edueydesdy epon 9]q]4dnasejuun

*9°¢ N9 4
(HIHILYdS 1@
LYNY3L Y 1IN
3HOANI
ON S3A
43HOLVdS 1 Y3HOLVAS 1
A JLVYNY3LTY JLYNY3LTY
IMOANI 3MOAN| TIN
QvIidl ANV ¥04 135
3791SNOdSIY vy S|
TIN
ON S3A ON S3A
I > Y¥3INNOO*avIyL L0Sd* ¥y = @Sy
ON . S3A
¢IIBISNOISU #Y QiYL Si
ON S3A

Y1730 < MILWIL vy - MON*TH

59

= N\

TABLE 3.7. Requirements for the Uninterruptible Code Acceptance Test =
At Least One Triad Is In the Idle Process

This test will be executed constantly when the trilad Is In the Idle
process.

The trlad w!ll determine the dlfference between TIME.NOW and R4.TICK.TIME.

a. |f this difference Is less than DELTA.KICK, the expected time to
execute the KICK Instructlon to restart another trlad,
a normal return will occur.

b. If thls dlfference Is greater than DELTA.KICK the test will| determine
the number of triads avallable to execute the R4 dispatcher (by means

of the TRIAD.STATUS(RG4) array) and the number executing the R4
dispatcher (by means of the TRIAD.COUNTER varlable). If this
dlfference Is greater than zero, the test will Invoke the alternate

dlspatcher.

60

TIME.NOW - R4.TICK.TIME > DELTA klck

YES NO

INVOKE ALTERNATE DISPATCHER NIL

FIGURE 3.7. Uninterruptible Code Acceptance Test: Trlad Idling

61

3.6. RETIREMENT ACCEPTANCE TEST

Prior to executlion of It+s task l1st, the R4 dispatcher executes the
conflguration program which generates commands for retirement of faulty trlads.
The actual setting of control variables and the command to retire |s performed
by the R4 dispatcher Itself, however, and thls function Is covered by the
Retlrement acceptance test.

Should a trlad be commanded to retire, the dispatcher will zero appropriate blts
In the TRIAD.BUSY and TRIAD.STATUS arrays, pass the responsibllity for the R4
frame restart to another trlad If the retired one |s R4 .RESPONSIBLE, and exIt
the R4 dispatcher. The Retlirement acceptance test checks the TRIAD.CMND and
TRIAD.STATUS words of all trlads to ensure that a faulty triad has both

sucessfully retired and properly executed Its acceptance test.

The Retirement acceptance test is executed immediately prior to the RESUME(O)
statement at the conclusion of the R4 dispatcher. If no retirement commands
have been issued, the acceptance test is exited. However, if the configuration
task issues a retirement command to the triad, the acceptance test checks the
TRIAD.STATUS bits for the triad. If they are set to FALSE, the retirement
directive has been successfully executed and the test will take a normal exit.
However, if this bit is TRUE, the acceptance test will test for a previous
failure. If no previous failures of this kind have occurred, the acceptance
test will set a failure indicator and set the TRIAD.STATUS word. Any subsequent
retirement failures would terminate execution of the primary dispatcher.
Table 3.8 and figure 3.8 show the requirements and N-S diagram for the
Retirement acceptance test.

62

TABLE 3.8. Requirements for the Retlirement Acceptance Test
The Retlirement acceptance test will be Invoked Immediately prior to the
RESUME(0) statement concluding execution of the R4 dispatcher.

The acceptance test will read the TRIAD.CMND word from maln memory. |f
the command does not indicate retirement, the test will exIt.

If the TRIAD.CMND Is GO.TO.IDLE for of any processor, the acceptance
test will read the TRIAD.STATUS word.

If the TRIAD.STATUS(RG4) Is FALSE, the acceptance test exlts normally.

If TRIAD.STATUS(RG4) Is TRUE, the acceptance test checks a fallure In-
dicator designated as RET.FAIL.

a. It RET.FAIL Is FALSE, the acceptance test sets It to TRUE, and sets
the TRIAD.STATUS to FALSE.

b. If RET.FAIL Is TRUE, the test Invokes the alternate dispatcher,
c. RET.FAIL Is set to FALSE as part of system Initlallzation.

63

4s8) edcuejdesdy juswed|iey °*g°¢ NII4

TN

AdVildd 01 NJNL3y d3HOLVdS I G

JAVYNY3L W 3INOANI
3N¥L = tv4t 13y

ON S3A TN

39NV IN3vE3Y113d *A38d

W3LSAS 40 1NO Qvidl 3¥N9ILINOCD

ON S3A

135W4 = (¥94)SNLViS*aviyl

ON

13701 °0L°09 = ONVYWNOD Qv

SECTION 4 - ALTERNATE DISPATCHER

This sectlon covers the requirements and design of the alternate dispatcher
as well as the conditions under which it returns control to the operatling
system. The dispatcher requirements are based on refs. 4 and 5. The design
of the alternate dispatcher Is Intended (1) to be as simple as possible
while fulfllling the necessary requirements and (2) to be independent of the
primary dlispatcher,

4.1. ALTERNATE DISPATCHER REQUIREMENTS
The alternate dispatcher performs the following functions

1. |Initlalization of system configuration varlables.

2, ldentificatlion of lead, support, and Inactlve trlads

3. Sequencing and DIspatching of (/0.

4. Dlspatching of applications routines in a predetermined order.
5. [ldentifying conditions for return to the primary dispatcher.

6. Acceptance tests and aborts

Startup Initialization of the alternate dispatcher

Because the system will already be under "warm start" conditlons at the tIme the
alternate dlspatcher Is Invoked, relatively little Initliallzation will be
performed by the alternate dispatcher. It Is anticipated that other systems
software, e.g. the configuration controller, reading and setting of error
latches, the IPC Interrupt routines, and supporting ASM routines, will not be

affected by a dispatcher fallure., Startup initlallzation Includes the
following:

alternate dispatcher task |ist

setting the alternate execution counter and repetition limit
informing other triads of the Invocation of the alternate dispatcher
saving the state of the trlads, busses, and memorles

ldentification of lead and support triads

The only assumption on the number of operational processors made In the design
of the alternate dispatcher Is that at least one triad will be functional. This
triad will be responsible for calling the critical tasks of all rate groups In
the appropriate sequence. Non-Critical tasks from all rate groups wlll run on a
second triad If avallable. Other operational processors wiil be deslgnated as

65

spares.

The triad Invoking the alternate dispatcher will designate Itself as lead triad,
and will Invoke the IPC Interrupt routine to Inform other triads of the
dispatcher change. The first triad responding will be designated support triad;
remalning processors will be spares. The lead triad wlll continue to run the
alternate dispatcher; the support triad will run all non—critical appllications
routines In a fixed order. '

Sequencing and dispatching of 1/0

The total responsibillty for the reading and writing of 1/0 buffers to the
MIL-STD-1553 bus wil!l rest with the first critical applications routine to be
run on the R4 Iteration group. This routine wlll have responsibllity for
designating even and odd buffer storage areas and performing the approprlate
updating and sampling as required by the applications routines. In the absence
of detalled specifications of the MIL-STD-1553 protocols and applications

routines developed for the FTMP, no further detalled requirements will be
speclfled.

Sequencing and Dispatching of applications roufines

Because only a single triad wiil be used to dIspatch the critical task 1ist and
a second triad will be used to Implement an Independent set of non-critical
tasks, the following features whilch were a necessary part of the primary
dispatcher were eliminated In the Interest of simplicity and Independence for
the alternate dispatcher:

(1) the recognition of constralnts for applications routines
(2) the starting of new frames at fixed time Intervals
(3) LOCK and UNLOCK functlons for memory locations

The fact that features (1) and (3) are not implemented Is Inconsequentlal when
only one triad Invokes all applications routines. The loss of feature (2)
implles that that It Is no longer correct to speak of a rate group or frames.
Thus, In the alternate dispatcher, rate group Is replaced with "iteration group"
and frame Is replaced with "lteration™, l.e. R3 Iteration group, iteration
count, etc.

The alternate dispatcher wlll maintaln the executlion order of the pr imary
routine by means of a task 1lst which Is placed Into cache memory as part of the
Init+lalization process. The task list Is dlvided Into three [teration groups
similar to the rate groups of the primary routine. The R4 lteration group,
placed at the beginning of the list, Is executed flrst. The R3 Iteration group
Is executed every second iteration, and the R1 group Is executed every elghth
Iteration.

At the concluslon of each Iteration, the alternate dispatcher will run Its

acceptance test, and, If passed, will Increment an execution counter and
re-Invoke the primary dispatcher if the executlon |Imit has been reached. |f

66

the alternate dispatcher falls, an alternate fallure flag will be set, and

control passed to another triad. |If the routine falls a second time, then the
processor wlll enter an abort routine.

67

4.2. DESCRIPTION OF THE ALTERNATE DISPATCHER

Figure 4.1 Is an N-S dlagram of the alternate dlspatcher. When 1t Is first
Invoked, this routine engages In the inltiallzation and startup actlvities
described above. It then enters the task executlion loop In which the critical
words are reset, the Iteration count Incremented, and the tasks from the varlous
rate groups are run. At the conclusion of an Iteration, the alternate
dispatcher acceptance test (similar to that of the primary dispatcher) is run.

In order to achleve a further degree of Independence, the alternate dispatcher
calls the applications routines rather than nstringling® them by means of the PSD
scheme used In the primary. Prior to the calling of appllcations routines, the
Interval timer Is set using the START.R4.TIMER procedure (for all [teration
groups). For the sake of simplicity and rellability, a single time will be used
in this routine rather than reading a time |imit from the task control block.
1f a timer Interrupt occurs, control Is passed back to the dispatcher which then
calls the next task. In addition to not providing for the checking of
constraints as noted above, the alternate dispatcher has no provisions for
checking on the task return code or frame count. As was the case In the primary
dispatcher, applications routines are expected to set a blt In the appropriate
lteration group critical word and to contaln Internal recovery blocks.

The flrst fallure to complete all critical tasks In an iteratlon wlll cause the
dlspatcher to be transferred to the support triad and the suspension of
executlon of non-critical tasks. If the fallure persists, execution of the
alternate dispatcher ceases and the system enters the abort routine.

Because of the |Imited capablilities of the alternate dispatcher, It Is desirable
to return to the primary routine as soon as possible. As a result, a repetition
Iimit, based on the number of previous fallures of the primary routlne, Is set
during the startup Initiallzation. When the dispatcher completes an iteration,
I+ increments an alternate execution counter which Is then compared to the
repetition IImit. Once the Iimit Is reached, control Is passed back to the
primary procedure and the system restored to its original state (unless hardware
fallures have occurred In the Intervening time). As was the case prior to
invocation of the alternate dispatcher, acceptance tests will contlinue to
monltor all aspects of the operation of the dispatcher and Invoke the alternate

once agaln upon detection of any fallures.

68

ORiGINAL paceE ©
OF POOR QUALITY

PERFORM ALTERNATE DISPATCHER INITIALIZATION
PERFORM |TERATION INITIALIZATION
SET INTERVAL TIMER
EXECUTE TASK (TASK SETS CRITICAL WORD)
|
DO UNTIL Ré LIST COMPLETE
EVEN ITERATION?
NO
SET INTERVAL TIMER
EXECUTE TASK
DO UNTIL R3 LIST COMPLETE
NIL
EIGHTH ITERATION?
NO
SET INTERVAL TIMER
. ' EXECUTE TASK NIL
DO UNTIL RY LIST COMPLETE
, CRITICAL WORDS ACCEPTANCE TEST
H
i
. \ ACCEPTANCE TEST OK?
- _ .
YES T
PREVIOUS FAILURE?
YES NO
INCREMENT ALTERNATE EXECUTION COUNTER
SET ALT.FAIL TO TRUE
ENTER
ABORT
ROUTINE |
UNTIL ALTERNATE EXECUTIONS > REPETITION LI1MIT ; CONFIGURE TRIAD OUT OF SYSTEM
INDICATE CONDITION ON DISPLAY
RETURN TO PRIMARY DISPATCHER 1K

FIGURE 4.1, Alternate Dlspatcher

A. L. Hopkins, T. B. Smith, and J., H. Lala, FTMP - A Highly Reliable
= » Proceedings of the IEEE,
Vol. 66, No. 10, pg. 1221, October, 1978

Jo J. Horning, et. al., "A Program Structor for Error Detectlon and Re-
covery",

: » IRIA, pp. 174-193, Aprll, 1974
FTMP Operating System Routines |Isting of 12 August, 1980

J. Lala, "Requirements for the FTMP Dispatcher", FTMP memo 9-79, CSDL,
June 18, 1979

H. Hecht, "introduction to the Use of Acceptance Tests for the FTMP Dis-
patcher", SoHaR memorandum, January, 1979

CSDL, ETMP Princlples of Operation Volume 11, Rev. 1.1, January, 1980

SoHaR, Inc., Engineering Report on Fault Tolerant Software for the FTMP,
January, 1980

70

VAR. NAME
MINSL IP

MAX R4 .TIME

R1.CRIT.WD
R3.CRIT.WD
R4.CRIT.WD

RX. INIT.CRIT

OLD.FRAME,
NEW.FRAME
FRAME.FAIL
R4 .APP,COUNT

ALT.EXEC.COUNT

REP.LIMIT

PRIM.FA!IL.COUNT

PREV.ALT.FAIL

TASK.LIST

APPENDIX A - NEW YARIABLES REQUIRED

ROUT INE

SLIP ACCEP.
TEST

INTERVAL
TIMER ACCEP.
TEST

D ISPATCHER
ACCEP, TEST

DI SPATCHER
ACCEP, TEST

DISPATCHER
ACCEP. TEST

CRITICAL WORD
RESET ACCEP.

TEST

FRAME COUNT
ACCEP. TEST

FRAME COUNT
ACCEP. TEST

STUCK IN R4
ACCEP. TEST

ALTERNATE
D I SPATCHER

ALTERNATE
DISPATCHER

ALTERNATE
D ISPATCHER

ALTERNATE
D 1SPATCHER

ALTERNATE
D ISPATCHER

PURPOSE

maximum absolute value SLIP can have prior
to the Invocation of the alternate dispatcher

MaxImum value that can be loaded Into an R4
timer (1.e. maxImum executlon time for an
applications routine)

Indlcator that R1 critical tasks have been
dIspatched

Indlcator that R3 critical tasks have been
dlspatched.

Indlcator that R4 critical tasks have been
dIspatched.

Initial values of critical words

Lead and lag counters to ensure that frame
counter Is approprlately Incremented

Counter for number of errors In Incre-
menting frame count

Counter of dispatched R4 tasks -
Counts executions of alternate dispatcher.

Repetition IImit for alternate dispatcher
after which primary Is re~Invoked.

Counts primary dispatcher fallures.
IndIcator of prevlious alternate dlspatcher

failure

Array of task Identiflcations for alternate
dlspatcher,

7"

YVAR. NAME

DELTA

DELTA.KICK

ROUTINE

UNINTERRUPT.
CODE ACCEP.
TEST

UNINTERRUPT.
CODE ACCEP.
TEST

PURPOSE

Time after new frame start for R4.RESP flag
to be set to FALSE -

Time after new frame start for Idling triad
to start the R4 dispatcher 1f 1t Is not R4
responsible

72

APPENDIX B - UNINTERRUPTIBLE ASM ROUTINES

Because fallure detection by the proposed acceptance tests Is contingent upon
the Implementation of the R4 Interrupt, sections of code In which thls Interrupt
Is disabled are of signiflcance. Fallure to exit from these routines would
result In Inhibition of the R4 rate group restart, and a major but undetected
failure would result If the "hung up" triad Is R4 responsible.

ASM routines called by the AED rate group dispatchers and associated procedures
weré checked for the presence of a SWAPMSK command that would disable all (and
hence R4) interrupts. The following procedures were exam!ned:

DISP.R4
DISP.R3,R1
SELECT.TASK
EXECUTE
HOLD.TIMER
RELEASE.TIMER
READ.EL
SET.BIT
K1CK

LOCK

UNLOCK

Tabie B.1 shows the |Ist of ASM routines In these procedures, and an Indlcation
of whether all Interrupts are disabled. Table B.2 shows the elght ASM rout!nes
which disabled Interrupts, thelr function, and notes on the complexity of the
code during the Interrupt defeat.

Software fallures In routines with stralight-line code or with a |Imited number
of unconditional Jumps are unilkely. However, when loops or conditlonal jumps
‘are present, the possibilities of fallure Increases. Based on Table B.2, it Is
possible to rule out HOG.BUS and posslbly RELEASE.BUS as sources of concern.
However, for the remalinder of the ASM routlnes, It Is necessary to determine
whether the R4 Interrupt should be enabled, whether other means exlst to detect
the R4 Interrupt, or whether additlonal measures (which will Increase the
complexity of the operating system) are appropriate.

75

Table B.1

AED Procedures and Assoclated ASM Routlnes

. AED Procedure

DISP4

SELECT.TASK

EXECUTE

HOLD.TIMER
RELEASE TIMER

TIMER. INT.HANDLER

READ.EL

SET.BIT

CLEAR.T.EL
K1CK

LOCK

ASM Routline

READ
WRITE
PEND
RESUME
SWAPMASK

READ
WRITE
SWAPMASK

READ
WRITE
ACTIVATE
ASNBIT

SWAPMASK

SWAPMASK
WRITE

PEND
RESUME

READ
HWRITE
WRITE

HOG.BUS
ASNBIT
WRITE
RELEASE.BUS

SREAD

HOG.BUS
READ
HWRITE
RELEASE.BUS

HOG.BUS
READ

WRITE
RELEASE.BUS
SWAPMASK

74

Uninterruptable Code

YES
YES

YES
YES

YES
YES
NO

YES
YES
YES
NO

NO

NO
YES

YES
- YES

YES
YES
YES

YES

YES
YES

YES

YES
YES
YES
YES

YES
YES
YES
YES

Table B.1 (continued)

AED Procedures and Assoclated ASM Routlnes

AED Procedure ASM Routine Uninterruptable Code
UNLOCK SWAPMASK NO

HOG.BUS YES

READ YES

ASNBIT NO

WRITE YES

HWRITE YES

RELEASE .BUS YES

715

Table B.2
ASM Routines Contalning Uninterruptible Sections of Code

ASM Routine Cal led By Description Note
READ DI SPATCHERS Reads from maln
SELECT.TASK memory; Interrupt
EXECUTE inhibited while
READ..EL data Is transferred.
KICK
LOCK
UNLOCK
WRITE DI SPATCHERS Writes to main
SELECT.TASK memory; Interrupt
EXECUTE Inhibited while
RELEASE.TIMER data Is transferred
SET.BIT
LOCK
UNLOCK
ACTIVATE EXECUTE Store new PSD, mask
string If necessary
PEND TIMER. INT.HANDLER String new PSD behind
current PSD
RESUME D ISPATCHERS Resume previously
TIMER. INT.HANDLER Interrupted task
(take old PSD and
make current).
HWRITE READ.EL Write to hardware
register, Inhlblts
Interrupt during
hardware transfer.
HOG.BUS SET.BIT Increment HOG.WORD
KICK
LOCK
RELEASE.BUS SET.BIT Decrement HOG.WORD
KICK

LOCK

Notes for Tabie B.2

5.

6.
8.

SWPMSK after BEGIN label (line 58) Inhiblts Interrupt. Several Jumps In
each transfer, i

Part of KERNEL. 4 Jumps (2 conditional) in uninterruptible sequence.
1 loop, 1 conditlonal Jump, 17 Instructions In uninterruptible sequence.
Part of KERNEL (not yet clear how entered). SWPMSK assumed prlor to

execution; 15 statements, 2 Jumps prlor to SWPMSK which would re-enable
Interrupts.

Numerous conditlonal jumps (depending on amount of data to be transferred)
and ASM statements in uninterruptible execution sequence.
7 statements, no Jumps or loops, In uninterruptible sequence.
1 conditional Jump, 1 unconditlonal Jump, 22 statements In uninterruptibie
sequence,

e .

. Report No.

2. Government Accession No.

NASA CR-166070

3. Recipient's Catalog No.

. Title and Sub@itle

Fault-Tolerant Software for the FTMP

5. Report Date

March 1984

6. Performing Organization Code

. Author(s)

Herbert Hecht and Myron Hecht

8. Performing Organization Report No.

. Performing Organization Name and Address

Subcontractor:

The Charles Stark Draper Laboratory, Inc. SoHar Inc.
555 Technology Square Los Angeles,
Cambridge, MA 02139 CA

10. Work Unit No. -

11. Contract or Grant No.
NAS1-15336

. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

‘Washington, DC 20546

13. Type of Report and Period Covered
Contractor Report

14. Sponsoring Agency Code
505-34-13-33

15.

Supplementary Notes

Langley Technical Monitor: Charles Meissner, Jr.

Prepared by SoHar Incorporated under Subcontract 564 to Charles Stark Draper Lab.

. Abstract

The work reported on here provides protection against software failures in
" the task dispatcher of the FTMP, a particularly critical portion of the system

software.

handled by similar techniques but are not covered in this effort.
(1) to develop provisions in the software

the work reported on here are:

Faults in other system modules and application programs can be

Goals of

design that will detect and mitigate software failures in the dispatcher portion
of the FTMP Executive and, (2) to propose the implementation of specific software

-reliability measures in other parts of the system.

Beyond the specific support to the FTMP project, the work reported on here
represents a considerable advance in the practical application of the recovery

block methodology for fault tolerant software design.

17.

Key Words (Suggested by Author(s))

Fault Tolerant Software,
Recovery Block, Fault Tolerant
Multiprocessor, Fault Tolerant
Dispatcher :

18. Distribution Statement

19.

20. Security Classif. {of this page)
Unclassified 82

Security Classif. {of this report)
Unclassified

21, No. of Pages

22. Price

